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Abstract. This study aimed to investigate the direct relationship between the joint de-

grees of freedom (DoF) of human movement system and its postural dynamics in terms 

of adaptability/flexibility. In our pilot experiment we fixed the join DoF (knee and an-

kle) to constrain the functional DoFs (one for knee, two for ankle). Young healthy par-

ticipants were required to maintain single-leg standing task with their dominant leg 

fixed. The center of pressure (COP) trajectory data were measured and analyzed by 

linear and nonlinear methods to assess static and dynamic property of their postural 

dynamics. As a result of comparing across conditions (normal no-fixation, ankle and 

knee fixation condition), static measure (COP trajectory length) did not significantly 

differ across conditions. However, dynamic measures (the fractal scaling exponent and 

sample entropy) significantly differed. The ankle joint fixation affected the scaling be-

havior (weakening the under-diffusive postural control process), and sample entropy 

decline (losing efficiency of postural control) in the ML direction. These results seemed 

to agree with the notion of the loss of complexity framework. 
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1 Introduction 

1.1 Adaptability/flexibility as an 

embodied skill 

Adaptability and flexibility can be considered unique abilities of human beings or living 

organisms in contrast to traditional robots or artificial intelligence (AI). These abilities enable 

living systems to adapt flexibly to their environment which can vary dynamically. In the AI 

research field, such a dynamic ability to respond to dynamic situations and behave flexibly 

is considered an essential feature of intelligence (Suwa, 2013). It is also related to another 

important concept embodiment. The living body consists of perception and action systems 

that have dynamic real-time interactions with their environment (Gibson, 1966). Authors 

have called such an embodied skill dynamic embodied adaptability and it is supposed to be 

a characteristic property of living systems, which differ from traditional robots or AI 

(Kodama, Kikuchi, & Yamagiwa, 2017). Although these artificial systems are good at re-

peating the same movement or process in the same way, living systems are not; however, 

they perform the same task in a variety of the different ways. Such variability is an important 
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feature of human skilled performance particularly in terms of adaptable/flexible behavior 

(Bernstein, 1967; Kudo & Ohtsuki, 2008). 

For example, Nonaka (2013) investigated skilled coordinated behavior of an exceptional 

tetraplegic individual who has practiced Japanese calligraphy with a mouth-held brush 

(Nonaka, 2013). The author showed evidence that joint configuration variances at different 

phases of writing were structured so as to maintain some important task variables across 

different realizations of the writing task; moreover compensatory coupling between joint var-

iables contributed to the observed structure of joint configuration variance (Nonaka, 2013). 

In another study, he and his colleague compared flexible bead-making behavior of bead 

craftsmen with different skill levels (Nonaka & Bril, 2014). As a result, they found that the 

highly skilled craftsman had rich flexibility and exquisite context sensitivity as well as the 

largest interstroke variability in the coordination of movement (Nonaka & Bril, 2012, 2014). 

Ito and her colleagues examined the role of postural control in a skilled task that requires 

perceptual-motor coordination of expert Kendama players (Ito, Mishima, & Sasaki, 2011). 

They revealed the importance of flexibility of knee movement to support dynamical coordi-

nation between body movement and the moving ball and the stability of the strong coupling 

of the head and the ball (Ito et al., 2011). Then how can adaptability/flexibility be realized 

and how can variability of observed data be explained?  

1.2 Degree of freedom and complex systems 

In human movement science and skill science research fields, it is said that the functional 

degrees of freedom (DoF) can provide the human movement system with the foundation of 

adaptive/flexible or skilled behavior. The human body has many multifarious DoFs, from the 

microscopic cell level to macroscopic joint level (Bernstein, 1967; Turvey, 1990). The DoF 

problem suggested that the large number of controllable DoFs poses a computational burden 

to the central nervous system, if we assume a computational model (Turvey, 1990). This 

indicates the difficulty of the unidirectional top-down motor control model using computer 

metaphor. Bernstein, who proposed the DoF problem, supposed that each component (DoF) 

is coordinated and coupled with other components to organize a functional unit (synergy) 

rather than being controlled separately (Bernstein, 1967). Bernstein attempted to solve the 

DoF problem with the idea of synergy. Such coupled components are not organized in non-

directional or random ways, but in sensitive and flexible way to achieve a specific task in a 

specific situation/environment (Bernstein, 1996).  

Although the DoF problem is actually a problem from the viewpoint of the computational 

model (top-down motor control model), it is also possible to consider redundant DoFs as a 

benefit to enable movement systems to behave adaptably/flexibly. The human body has an 

intrinsic fluctuation derived from a physiological mechanism and is exposed to external per-

turbation from its environment or own body movement. However, if the system has redun-

dant DoFs and an ability to freeze and release them quickly, it might realize stable behavior 

in an adaptive/flexible way against intrinsic fluctuation or external perturbation (Kodama & 

Aoyama, 2017). 

After Bernstein’s proposal of the DoF problem and the idea of synergy, the self-organiza-

tion theory (Haken, 1978; Nicolis & Prigogine, 1977) was applied to human movement stud-

ies to understand emergent properties of a human movement system. It is called the dynam-

ical systems approach (DSA) and has been widely applied to human movement science areas. 

Compared to the traditional approach to motor behavior assuming internal computation, DSA 

focuses more on interactions between the body (including brain), environment, and task 

(Davids, Glazier, Araújo, & Bartlett, 2003). While the traditional top-down motor control 

model supposes a dominant central system (i.e., brain) and focuses on its component, DSA 

focuses on the interaction among system’s component (Van Orden, Holden, & Turvey, 
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2003). Complex systems consist of a large number of interacting components (DoF); the 

emergent behavior of the system is self-organized and can be difficult to anticipate from 

dynamics of the individual components (Boccara, 2003). Their emergent behavior does not 

result from the existence of a central controller like brain (Boccara, 2003).  

1.3 Loss of complexity hypothesis 

The perspective of the self-organizing theory provides new insight and a useful framework 

for not only human movement science and skill science, but also the clinical and therapeutic 

research fields. The loss of complexity hypothesis is a broad theoretical perspective applied 

widely to physiological and behavioral processes (Lipsitz & Goldberger, 1992). According 

to the hypothesis, the age- and/or disease-related changing process can be defined by a pro-

gressive loss of complexity within the dynamics of physiologic outputs (e.g., physiological 

and behavioral data) (Manor & Lipsitz, 2013). In other words, loss of complexity leads to an 

impaired ability to adapt to stressors or perturbation (Lipsitz & Goldberger, 1992). It is sup-

posed to be due to a loss or impairment of functional components, and/or altered nonlinear 

coupling between these components (Lipsitz & Goldberger, 1992). Thus, the hypothesis as-

sumes that a system’s adaptive/flexible function relates to its complexity and is observed in 

the dynamics of the system’s output behavior (e.g., physiological and behavioral times series 

data). Moreover, these dynamics are characterized by the presence of fractal scaling or the 

amount of regularity/predictability in the dynamics (Lipsitz & Goldberger, 1992; Stergiou, 

2016).  

For postural balance studies, the loss of complexity hypothesis has been applied and the 

center of pressure (COP) fluctuation is supposed to relate to the adaptive/flexible function of 

the postural system. For example, the postural dynamics of healthy young and healthy elderly 

people have high complexity than that of elderly people who have a history of falls (Costa et 

al., 2007). Parkinson’s disease patients also show lower flexibility in terms of deterministic 

structure of the COP dynamics than healthy participants (Schmit et al., 2006). Sensory im-

pairments contributed to a decreased COP complexity, which reflected a reduced adaptive 

capacity of the postural control system (Manor et al., 2010). 

Those postural balance studies applied nonlinear analysis methods like fractal analysis and 

entropy analysis to COP time series data. Fractal analysis is a time series analysis that obtains 

a dynamic measure. It can evaluate the temporal correlation of a time series (Brown & 

Liebovitch, 2010). Such a property is called a fractal property or 1/f noise and indicates that 

fluctuations in the time series extend across many time scales (Eke, Herman, Kocsis, & 

Kozak, 2002). Such relative independence of the underlying processes at different time scales 

suggests that 1/f noise renders the system more stable and more adaptive to internal and ex-

ternal perturbations (Delignières, Torre, & Lemoine, 2005). Thus, fractal property is consid-

ered a dynamic measure and is associated with health/pathology (Lipsitz & Goldberger, 

1992) and flexibility/adaptability (Hausdorff, 2009). To assess the complexity of the system, 

dynamic measure based the idea of entropy derived from information theory has been also 

applied to biological and physiological data. Entropy refers to the rate of information gener-

ation by a system. While repeating systems generate less new information, systems with var-

ying complexly generate new (non-redundant) information when the system visits new states. 

Generally, high entropy means relatively irregular and complex variability. In contrast, low 

entropy means regular and predictable behavior. According to the loss of complexity hypoth-

esis, healthy systems are characterized by an irregular and complex variability, whereas dis-

ease or aging is associated with regularity/predictability and less complexity (Goldberger et 

al., 2002; Pincus, 1991).  

It is supposed that the loss of complexity relates to a decline in the capability to reorganize 

the interactions between its components (its functional DoF) to adjust the degree of 
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unpredictability of behavioral fluctuations to meet task demands (Sleimen-malkoun, 

Temprado, & Hong, 2014). Aging and/or disease are involved in change in coupling between 

components (DoFs) and the decrease in interaction between them. In other words, systems 

with less interaction between their components and few functional DoFs tend to behave reg-

ularly and their dynamics lose dimensionality or complexity (Sleimen-malkoun et al., 2014). 

However, most previous studies have investigated the relationship between DoF and system 

dynamics by comparing particular populations such as elderly/impaired people with healthy 

young people. In these cases, it is difficult to reveal the direct relationship between the DoF 

and system dynamics because other factors derived from aging and/or disease cannot be ig-

nored.  

1.4 Our research aims 

As an exploratory investigation, our pilot study manipulated the DoF of a human move-

ment system (i.e., joint) as an independent variable, and compared different DoF conditions 

within subjects. We fixed and constrained the ankle joint (two DoFs) and knee joint (one 

DoF) of the dominant leg and required young healthy participants to perform single-leg 

standing task by their dominant legs; this was compared to the no-fixation normal condition. 

The COP trajectory data were measured and analyzed by linear and nonlinear methods to 

assess a static and dynamic properties of the postural dynamics. Then, the direct relationship 

between the DoF and COP dynamics was investigated. Such an investigation may lead to 

deeper understanding of their relationship and provide an experimental evidence of the loss 

of complexity hypothesis. 

2 Method 

2.1 Participants 

Six healthy male participants (average = 23.50 (SD=4.68) years, all right-handed) were 

recruited to join the experiment. The experimental procedures were approved by the research 

ethics committee of Kanagawa University, where the experiment was conducted. Each par-

ticipant provided informed consent for participation in this study. 

2.2  

Joint fixation equipment (REAQER ankle supporter, REAQER knee supporter, Fig.1) 

were used to fix the ankle and knee joints. The center of pressure (COP) trajectories were 

measured using a force plate (Leptrino CFP600YA302US, sample rate = 200 Hz). To process 

and analyze COP data, MATLAB (R2017b, MathWorks) and RStudio (Version 1.1.423) 

were used to process and analyze the COP data. 

2.3 Procedure 

In the current pilot experiment, three conditions were compared, namely, the normal con-

dition (no joint fixation), ankle condition (ankle joint fixation), and knee condition (knee 

joint fixation) as shown in Fig.1. Under the joint fixation conditions, each joint of the domi-

nant leg (i.e., right leg) of each participant was fixed using the equipment. Each participant 

was asked to maintain single-leg standing with their dominant leg for 35-s. After conducting 

the normal condition task first as a baseline condition, the ankle and knee condition tasks 



- 5 - 

were counterbalanced between the participants. Under each condition, they were required to 

repeat a 35-s trial four times with 30-s interval between trials, and with 3-min rest between 

conditions. 

 

Fig. 1.   Experimental conditions and joint fixation equipment (Left: Normal condition, Middle: An-

kle condition, Right: Knee condition). 

2.4 Data Analysis 

After measuring the COP trajectory data, we removed the initial 5-s data and analyzed the 

remaining 30-s of time series data of the COP in the mediolateral (ML) and anteroposterior 

(AP) directions. Before performing the following time series analyses, all COP data were 

smoothed by a 10-Hz low-pass filter (4th order Butterworth filter). 

To assess postural stability, the COP trajectory length was calculated and regarded as a 

static measure (Horak, 1989; Shumway-Cook & Woollacott, 2013). This measure defines 

shorter trajectory length as less movement (less postural sway) and it means more stable 

posture. In this sense, we interpret this as a static measure. 

By contrast, to evaluate dynamic postural stability, we also applied nonlinear time series 

analyses, detrended fluctuation analysis (DFA; Peng et al., 1994) and sample entropy 

(SampEn; Richman, R., & Moorman, 2000). DFA is a fractal analysis for nonlinear time 

series data, and has been used to assess a system’s adaptability/flexibility (Hausdorff, 2009) 

in terms of temporal correlation in time series data (Brown & Liebovitch, 2010). DFA cal-

culates the scaling exponent α as the slope of the log-log plot of fluctuation vs. time scale. A 

linear relationship on a log-log plot indicates the presence of scaling. The DFA scaling ex-

ponent α is interpreted as an estimation of the Hurst exponent H, and is related to H as fol-

lows (Delignières, Torre, & Bernard, 2011): if 0 < α < 1, then H=α; if 1 < α < 2, then H=α-

1. H can be interpreted for the time series as follows: if 0 < H < 0.5, the time series is anti-

persistent/under-diffusive; if H = 0.5, it is uncorrelated (white noise); if 0.5 < H < 1, it is 

persistent/over-diffusive; if H = 1, it is considered 1/f noise (Marmelat, Torre, & Delignières, 

2012). Sample entropy analysis is a method with which to quantify the complexity or irreg-

ularity of a time series (Richman et al., 2000). Sample entropy (SampEn) indexes the (ir)reg-

ularity of a time series and is used to analyze the dynamics of complex systems. While a 

smaller sample entropy means greater regularity, a larger sample entropy indicates relatively 

irregular or complex dynamics. For a given embedding dimension m, tolerance r, and number 

of data points N, SampEn is the negative logarithm of the probability that if two sets of sim-

ultaneous data points of length m have distance < r then two sets of simultaneous data points 

of length m+1 also have distance <r (Stergiou, 2016). DFA was performed using the R pack-

age 'nonlinearTseries' (Constantinoet al., 2015). SampEn was performed using the R package 

' pracma' (Borchers, 2018) with input parameters, embedding dimension m=3 and a ratio of 

standard deviation of the data of r=0.2. 
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3 Result and Discussion 

3.1 COP Trajectory Length 

Fig. 2 shows the mean COP trajectory length for each condition (left: normal condition; 

center: ankle condition; right: the knee condition; error bar: standard deviation). The mean 

value was 1393.61 (SD=228.82) [mm] in the normal condition, 1507.60 (SD=210.93) [mm] 

in the ankle condition, and 1471.48 (SD=350.43) [mm] in the knee condition. The results 

seem to indicate that postural sway is the smallest in the normal condition, which is the larg-

est DoF condition. However, the result of one-way ANOVA revealed no significant differ-

ences between the conditions (F(2, 10)=0.995, p=0.404, N.S.). This implies that the joint 

fixation did not affect the static measure, which is the COP trajectory length (i.e., how much 

posture fluctuate) in the case of our pilot study (N=6). 

 

 

Fig. 2 COP trajectory length [mm] (Left: Normal condition; Center: Ankle condition; Right: Knee 

condition). 

3.2 DFA Scaling Exponent α 

Fig. 3 displays the mean DFA scaling exponent for each condition in the ML and AP di-

rections, respectively (left: normal condition; center: ankle condition; right: the knee condi-

tion; error bar: standard deviation). In the ML direction, the mean value was 1.17 (SD=0.07) 

in the normal condition, 1.25 (SD=0.05) in the ankle condition, and 1.18 (SD=0.06) in the 

knee condition. In the AP direction, the mean value was 1.30 (SD=0.09) in the normal con-

dition, 1.31 (SD=0.09) in the ankle condition, and 1.30 (SD=0.10) in the knee condition. To 

compare these values statistically, one-way ANOVA was conducted for each scaling expo-

nent α of both the ML and AP directions. The results show that we found the significant main 

effect on the scaling exponent α only in the ML direction (F(2, 10)=0.011, p<0. 05). Because 

of multiple comparisons (Ryan’s method), significant differences were found between the 

ankle and normal conditions (t(5)=2.833, p<0.05), and between the ankle and knee conditions 

(t(5)=2.415, p<0.05). These results indicate that the scaling exponent α was larger in the 

ankle condition than in the other conditions in the ML direction. In contrast, there was no 

significant main effect in the AP direction (F(2, 10)=0.081, p=0.922, N.S.). 
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Fig. 2 DFA scaling exponent α (Left side x-axis ML direction, Right side: y-axis AP direction, 

in each side, Left: Normal condition, Middle: Ankle condition, Right: Knee condition). 

 

The DFA scaling exponent is interpreted as follows: if α=1, then the time series has per-

sistent long-range correlations (i.e., 1/f pink noise); if α=1.5, indicates Brownian motion. For 

1<α<1.5, the time series has correlation, but lose fractality and ceases to be a power-law 

relation (Peng, Havlin, Stanley, & Goldberger, 1995). In the current data, the DFA scaling 

exponents were ranged between 1 and 1.5. Within this range, the scaling exponent α is related 

to the Hurst exponent H as H=α-1. This implies that an increasing trend in the past is likely 

to be followed by a decreasing trend, and an anti-persistent correlation/under-diffusive pro-

cess (Marmelat et al., 2012). In terms of fractality, if 0.75<α<1.25, then the time series has 

long-range correlation and indicates 1/f pink noise (Marmelat et al., 2012). Comparing our 

results across conditions, α was higher in the ankle condition than other two conditions in the 

ML direction. This means that the under-diffusive process that regulates single-leg standing 

posture in the ML direction weakened when the ankle joint was fixed. In other words, adapt-

ability/flexibility was higher in the normal and knee conditions than in the ankle condition 

because the scaling exponent in the normal and knee conditions were ranged between 

0.75<α<1.25. If so, the ankle joint fixation might cause loss of adaptability/flexibility. 

3.3 Sample Entropy 

Fig. 4 represents the mean SampEn for each condition in the ML and AP directions re-

spectively (left: normal condition; center: ankle condition; right: the knee condition; error 

bar: standard deviation). In the ML direction, the mean value was 0.117 (SD=0.023) in the 

normal condition, 0.095 (SD=0.018) in the ankle condition, and 0.116 (SD=0.025) in the 

knee condition. In the AP direction, the mean value was 0.073 (SD=0.026) in the normal 

condition, 0.076 (SD=0.026) in the ankle condition, and 0.074 (SD=0.026) in the knee con-

dition. To compare these values statistically, one-way ANOVA was conducted for each 

SampEn of both the ML and AP directions. The results show that we found the significant 

main effect on SampEn only in the ML direction (F(2, 10)=4.295, p<0. 05). Because of mul-

tiple comparisons (Ryan’s method), significant differences were found between the ankle 

and normal conditions (t(5)=2.616, p<0.05), and between the ankle and knee conditions 

(t(5)=2.453, p<0.05). These results indicate that SampEn was larger in the ankle condition 

than in the other conditions in the ML direction. In contrast, there was no significant main 

effect in the AP direction (F(2, 10)=0.071, p=0.931, N.S.). 
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Fig. 3 Sample Entropy (Left side x-axis ML direction, Right side: y-axis AP direction, 

in each side, Left: Normal condition, Middle: Ankle condition, Right: Knee condition). 

 

A high SampEn indicates relatively low regularity or complexity, while low SampEn 

means relatively high regularity or predictability. In the current data, postural sway was more 

regular in the ML direction in the ankle condition than the other two conditions. The result 

suggests that low SampEn (more regular postural sway) in the ankle condition was inter-

preted as an increase in the effectiveness of postural control in the ML direction in terms of 

amount of attention or cognitive involvement (Donker, Roerdink, Greven, & Beek, 2007). 

Some previous studies argued that postural sway regularity is positively correlated with the 

degree of cognitive involvement in postural control (Donker et al., 2007; Roerdink et al., 

2006). Actually, some participants reported that it was more difficult to perform the single-

leg standing task in the ankle condition than in other two conditions. We guess that such a 

difficulty leaded to more attention to postural control and more regular postural sway in the 

ankle condition. 

3.4 General Discussion 

COP trajectory length can be interpreted as a static measure because it indicates how much 

postural sway is observed and it is defined as less movement or more stable sway. In the 

current pilot experiment, we could not find any significant differences between the conditions 

in terms of the quantity of postural sway. This means that joint fixation did not affect the 

static balancing ability of single-leg standing. In contrast, the DFA scaling exponent α and 

SampEn can be considered dynamic measures because they quantify how the posture fluctu-

ated in terms of temporal correlation or temporal pattern complexity of the time series data. 

Our results suggest that postural sway during the single-leg standing task had a weaker under-

diffusive process and less irregular/complex fluctuation in the ML direction in the ankle con-

dition than in the other two conditions.  

The single-leg standing task requires postural control based on foot function using ankle 

joint movement (King & Zatsiorsky, 2002). The ankle joint fixation seemed to constrain the 

mobility of the foot movement and postural control in the ML direction, whereas the knee 

joint fixation did not affect the postural dynamics because the knee joint has only one DoF 

(flexion-extension) and is not involved in postural control in the ML direction. In terms of 

functional DoF, the knee joint has one DoF and the ankle joint has two DoFs, therefore the 

results of fractal analysis show that the ankle joint fixation might cause less adaptability/flex-

ibility. This notion is reasonable from the viewpoint of the loss of complexity hypothesis 

(Sleimen-malkoun et al., 2014). On the other hand, the results of entropy analysis suggest 
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that the ankle joint fixation might cause relatively regular postural sway (low sample en-

tropy); in other words, it might evoke a loss of complexity in the postural dynamics in the 

ML direction. This notion also seems to agree with the loss of complexity hypothesis 

(Sleimen-malkoun et al., 2014). 

3.5 Future directions 

The present article reports only the results of the pilot experiment (N=6).  We should col-

lect more data and confirm whether a similar tendency can be found in the future. In addition, 

we also plan to investigate not only single-leg standing with the dominant leg, but also other 

balancing tasks. In terms of data analysis, other methods should be conducted to quantify 

adaptability/flexibility, complexity, and dimensionality (Bravi, Longtin, Seely, & Ca, 2011; 

Cavanaugh, Guskiewicz, & Stergiou, 2005; Hidaka & Kashyap, 2013), and associate them 

with empirical data of previous studies. 

As discussed, our results should be explained from kinematic or biomechanical perspective 

in more detail to understand the relationship between the functional DoF (and its fixation) 

and the system dynamics in terms of complexity and adaptability/flexibility. Further experi-

mental studies regarding the effects of the freeze and release of DoF on the static and dynamic 

properties of system dynamics may lead to a deeper understanding the direct relationship 

between them and to obtaining empirical evidence on the loss of complexity hypothesis. We 

also expect that such experimental strategies can provide more applied research on not only 

the clinical assessment of the fall risk of elderly/impaired people, but also practical evaluation 

of sports skills or dexterous performances of athletes with further validity of quantification 

and evaluation using various data analytical methods. 

4 Conclusion 

This article reported the results of our pilot experiment to investigate the direct relationship 

between the joint DoF of the human movement system and its postural dynamics in terms of 

adaptability/flexibility. In the experiment we manipulated the join DoFs (knee and ankle) 

with joint fixation equipment. Young healthy participants were required to maintain single-

leg standing with their dominant leg fixed. The COP time series data were measured and 

analyzed by linear and nonlinear methods to assess the static and dynamic properties of their 

postural dynamics. The results of comparing across conditions (normal no-fixation, and ankle 

and knee fixation condition) show that the static measure (COP trajectory length) did not 

significantly differ across conditions; however, the dynamic measures (DFA scaling expo-

nent and sample entropy) differed significantly. The ankle joint fixation (two DoFs con-

strained condition) affected the scaling behavior leading to weakening of the under-diffusive 

postural control process, and a sample entropy decline which indicated the losing efficiency 

of postural control requiring an amount of attention (cognitive involvement). These results 

of dynamic measures seem to agree with the previous studies’ insight within the loss of com-

plexity framework that suggests that less functional DoF might lead to loss of complexity or 

adaptability/flexibility of the system behavior. 
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